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Temporal sentence grounding in videos (TSGV), which aims to localize one target segment from an untrimmed video with

respect to a given sentence query, has drawn increasing attentions in the research community over the past few years. Diferent

from the task of temporal action localization, TSGV is more lexible since it can locate complicated activities via natural

languages, without restrictions from predeined action categories. Meanwhile, TSGV is more challenging since it requires both

textual and visual understanding for semantic alignment between two modalities (i.e., text and video). In this survey, we give a

comprehensive overview for TSGV, which i) summarizes the taxonomy of existing methods, ii) provides a detailed description

of the evaluation protocols (i.e., datasets and metrics) to be used in TSGV, and iii) in-depth discusses potential problems of

current benchmarking designs and research directions for further investigations. To the best of our knowledge, this is the irst

systematic survey on temporal sentence grounding. More speciically, we irst discuss existing TSGV approaches by grouping

them into four categories, i.e., two-stage methods, single-stage methods, reinforcement learning-based methods, and weakly

supervised methods. Then we present the benchmark datasets and evaluation metrics to assess current research progress.

Finally, we discuss some limitations in TSGV through pointing out potential problems improperly resolved in the current

evaluation protocols, which may push forwards more cutting edge research in TSGV. Besides, we also share our insights on

several promising directions, including four typical tasks with new and practical settings based on TSGV.

CCS Concepts: · Computing methodologies → Natural language processing; Computer vision; · Information systems →

Video search.

Additional Key Words and Phrases: video understanding, multi-modality, vision and language, cross-modal video retrieval

1 INTRODUCTION

With the increasing development of multimedia technologies on mobile phones and other terminal devices, people
have gained easier access to videos from all around the world. Compared with other mediums for information
transmission and exchange like texts and images, videos contain more dynamic activities and are of richer
semantics to convey complex while understandable information. Basically, one video is composed of a continuing
sequence of frame images possibly accompanied by audio and subtitles. Moreover, the videos from online websites
in the wild are also surrounded by multiple forms of natural language texts (e.g., comments written by video
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7.11s 12.7s

Query: A little girl walks by a little boy and continues to blow the leaves.

Fig. 1. An example of Temporal Sentence Grounding in Videos (TSGV), i.e., to determine the start and end timestamps of the

target video segment corresponding to the given sentence query.

viewers, video descriptions uploaded by creators, recommendation reasons edited by website editors). Thus, videos
have natural advantages for multimedia intelligence exploration and research. However, the raw videos (e.g., the
user-generated video data [8] or surveillance videos [93]) are too redundant and of content sparsity against the
user-speciic retrieval demands. Furthermore, it is also challenging to maintain and manage these raw videos
since they need to occupy a huge number of storage resources [22]. Therefore, the ability to quickly retrieve a
speciic video segment (i.e., moment) from a long untrimmed video can allow users to locate highlighted moments
of their interests conveniently and help information providers to optimize the storage fundamentally, thus being
of great importance and interest in the research community.

Given the urgent need in both academia and industry, a vast number of studies attempt to automatically capture
the key information within a video, e.g., video summarization [65, 123, 131], video highlight detection [43, 114].
More fundamentally, some works [4, 44, 51, 64, 82, 84, 99, 117] treat the task of detecting a video segment
that performs a speciic action as a video classiication problem, denominating this type of task as action

detection or temporal action localization (TAL) [5]. Though TAL is able to extract efective information from the
untrimmed videos, it is restricted by predeined action categories. Even the categorization is becoming more
and more complicated, it is still not fully adequate to cover all kinds of interactive activities. Thus, it is natural
to utilize natural language to describe those various and complex activities. Temporal Sentence Grounding in
Videos (TSGV) is such a task to match a descriptive sentence with one segment (or moment) in an untrimmed
video that is of the same semantics. As shown in Fig. 1, given the query łA little girl walks by a little boy and
continues to blow the leavesž as input, the goal of TSGV is to predict the start and end points (i.e., 7.11s to
12.7s) of the target segment within the whole video, and the predicted segment should contain the activities
indicated by the input query. Like other visual-and-language tasks (e.g., visual question answering [1, 2, 120],
image/video captioning [18, 72, 73, 109, 115, 116], visual grounding [45, 98, 118] and vision-and-language pre-
training [19, 24, 61, 90]), TSGV requires both understanding of visual and textual inputs. Moreover, it could
also serve as an intermediate task for various downstream vision-and-language tasks such as video question
answering [28, 48, 50, 107] and video summarization [23, 66, 81, 123, 140]. For example, related segments can
be irst grounded through the textual question and then analyzed for discovering the inal answer to the input
question. Also, by providing concise sentence summaries of videos, semantic coherent video segments can be
grounded, retrieved and composed as the visual summaries of the original videos. Hence, it is worthwhile to go
into a deep exploration in TSGV, which connects computer vision and natural language processing communities,
as well as further promotes a variety of downstream applications. However, TSGV is much more challenging for
the following reasons:
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• Both videos and sentence queries are in the form of temporal sequences with rich semantic meanings.
Therefore, matching the relationships between videos and sentences is quite complicated and needs to be
modeled in a ine-grained manner for accurate temporal grounding.

• The target segments corresponded to the provided sentence queries are quite lexible in terms of spatial
and temporal scales in videos. It will be computationally expensive to fetch candidate video segments
of diferent lengths in diferent locations via sliding windows, followed by individually matching them
with the sentence query. Therefore, obtaining video segments with diferent temporal granularities to
comprehensively cover the target segments eiciently also poses challenges for TSGV.

• Activities in a video often do not appear independently, instead they have internal semantic correlations
and temporal dependencies on each other. Therefore, modelling the video context information, together
with the inner logic relations among diferent video contents under the semantic guidance from sentence,
becomes an important and challenging step to ensure the accuracy of temporal grounding approaches.

Despite the above challenges, there exist many promising research works which bring continuous improvement
in TSGV in the past few years, ranging from early two-stage matching-based methods [29, 32, 38, 57, 103], single-
stage methods [14, 122, 124, 128], RL-based methods [35, 36, 105], to the recent weakly supervised setting that
draws people’s attention [26, 67]. Therefore, a systematic review for TSGV which summarizes the current works,
analyzes their strengths and weaknesses, as well as promotes the future research directions becomes a necessity
for the community. Both Yang et al. [113] and Liu et al. [59] provide a method review on existing TSGV methods
with a future direction discussion. Comparing to these previous ones, our survey covers more SOTA models that
have been newly published and provides a clearer taxonomy of existing methods. The in-depth analysis of the
limitations of current evaluation protocols is an additional advantage. In this survey, we summarize the taxonomy
of existing methods, present the evaluation protocols, critically reveal the potential problems based on the current
benchmarking designs, and further identify promising research directions to promote the development of this
ield.
The remainder of this article is organized as follows: Sec. 2 gives a detailed taxonomy and analysis on the

existing approaches. Sec. 3 reviews benchmark datasets and evaluation metrics, summarizing the current research
progress via comprehensive performance comparisons. Sec. 4 contains a discussion of the hidden risks behind
current evaluation setting and point out promising research directions, followed by Sec. 5 that concludes the
whole paper.

2 METHODS OVERVIEW

We establish the taxonomy of existing approaches based on their characteristics (c.f ., Fig. 2). Early works
adopt a two-stage architecture (c.f ., Fig. 3a), i.e., they irst scan the whole video and pre-cut various candidate
segments (i.e., proposals or moments) via sliding window strategy or proposal generation network, and then
rank the candidates according to the ranking scores produced by the cross-modal matching module. However,
such a scan-and-localize pipeline is time-consuming due to too much redundant computation of overlapping
candidate segments, and the individual pairwise segment-query matching may also neglect the contextual video
information.

Considering the above concerns, some researchers start to use single-stage methods to solve TSGV without the
process of pre-cutting candidate moments (c.f ., Fig. 3b). Instead, multi-scale candidate moments ended at each time
step are maintained by LSTM sequentially or convolutional neural networks hierarchically, and such single-stage
methods are named anchor-based methods. Some other single-stage methods predict the probabilities for each
video unit (i.e., frame-level or clip-level) being the start and end point of the target segment, or straightforwardly
regress the target start and end coordinates based on the multimodal feature of the providing video and sentence
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Taxonomy
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Fig. 2. The taxonomy of existing approaches, grouped into early two-stage methods, typical single-stage methods, rein-

forcement learning (RL)-based methods, and weakly supervised methods. According to the ways of proposal generation,

the two-stage methods can be subsequently divided into sliding window-based and proposal-generated ones. Meanwhile,

the single-stage methods can be divided into anchor-based and anchor-free ones, which depends on whether or not an-

chors (candidate moments) are produced for ranking. The weakly supervised methods could also be further grouped into

MIL-based and reconstruction-based.

query. These methods do not depend on any candidate proposal generation process, and are named anchor-free
methods.

Besides, it is worth noting that some works resort to deep reinforcement learning techniques to address TSGV,
taking the sentence localization problem as a sequential decision process, which are also of anchor-free. To reduce
intensive labor for annotating the boundaries of groundtruth moments, weakly supervised methods with only
video-level annotated descriptions have also emerged, which can be either MIL-based or reconstruction-based. In
the following, we will present all the approaches and perform a deep analysis of the characteristics for each type.

2.1 Two-stage method

For a two-stage method, the pre-segmenting of proposal candidates is conducted separately with the model
computation. It takes the pre-segmented candidates and the sentence query as inputs of a cross-modal matching
module for target segment localization. The two-stage methods can be grouped into two categories based on
diferent ways to generate proposals.

2.1.1 sliding window-based. Early methods adopt multi-scale sliding window sampling strategy for the generation
of candidate proposals. There are two pioneering works MCN [38] and CTRL [29] to deine the TSGV task and
construct benchmark datasets. Firstly, Hendricks et al. [38] propose MCN, which samples all the candidate
moments (i.e. segments) via sliding window mechanism, and then projects the video moment representation
and query representation into a common embedding space. The ℓ2 distance between the sentence query and the
corresponding target video moment in this space is minimized to supervise the model training (c.f ., Fig. 4(b)).
Speciically, MCN encourages the sentence query to be closer to the target moment than negative moments
in a shared embedding space. Since the negative moments either come from other segments within the same
video (intra-video) or from diferent videos (inter-video), MCN devises two similar but diferent ranking loss
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Fig. 3. Two-stage Methods vs. Single-stage Methods. (a): At stage 1, the entire video is pre-segmented into multi-scale

candidate moments. At stage 2, the matching module takes query-moment pairs as inputs and outputs matching scores for

ranking. (b): Single-stage methods can be either anchor-based or anchor-free. Anchor-based methods use diferent types of

anchors (e.g., Conv-styled, RNN-styled) as candidate moments, while anchor-free methods use prediction head to directly

obtain moment boundaries (e.g., generate probability/atention weights for each position, or predict the ofsets from a certain

frame to the start/end groundtruth boundaries).
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whereL� (�,�) = max(0, � −�+�), � is a margin. As for training sample � , the intra-video ranking loss encourages
sentence � to be closer to the target moment at the location �� than the negative moments from other possible
locations within the same video, while the inter-video ranking loss encourages sentence � to be closer to the target
one at location �� than the negative ones from other videos of the same location �� . The intra-video ranking loss is
able to diferentiate between subtle diference within a video while the inter-video ranking loss can diferentiate
between broad semantic concepts.
At the same time, Gao et al. [29] propose CTRL, which is the irst one to adapt R-CNN [34] methodology

from object detection to the TSGV domain. Particularly, CTRL also leverages sliding window to obtain candidate
segments of various lengths, and as shown in Fig. 4(a), it exploits a multi-modal processing module to fuse the
candidate segment representation with the sentence representation by three operators (i.e., add, multiply, and
fully-connected layer). Then, CTRL feeds the fused representation into another fully-connected layer to predict
the alignment score and location ofsets between the candidate segment and the target segment. CTRL designs a
multi-task loss function to train the model, including visual-semantic alignment loss and location regression loss:

L��� =
1

�
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Fig. 4. The Cross-modal Temporal Regression Localizer (CTRL) and Moment Context Network (MCN) frameworks, two

pioneer works that firstly present TSGV task. CTRL uses joint language-segment representations to get the final alignment

scores and refines the temporal boundaries by location regressor, while MCN tries to minimize the ℓ2 distance between the

language and video representations in a common space, figures from [29] and [38].

where L��� is the visual-semantic alignment loss considering both aligned (video segment, query) pairs and
misaligned pairs. ���, � measures the alignment score between video segment �� and sentence � � . The location
regression loss L��� is only accounted for aligned pairs to predict the correct coordinates. � is a smooth-L1
function.

Compared to above CTRL that treats the query as a whole, Liu et al. [58] further make some improvements by
decomposing the query and adaptively get the important textual components according to the temporal video
context. Meanwhile, TMN [53] dynamically generates a modular neural network layout based on the semantic
structure of the query to reason over the video.

Since CTRL overlooks the spatial-temporal information inside the moment and the query, Liu et al. [57] further
propose an attentive cross-modal retrieval network (ACRN). With a memory attention network guided by the
sentence query, ACRN adaptively assigns weights to the contextual moment representations for memorization to
augment the moment representation. SLTA [42] also devises a spatial and language-temporal attention model
to adaptively identify the relevant objects and interactions based on the query information. Considering that
the inherent spatial-temporal structure of videos can not be fully captured by one-dimensional vectors in CTRL,
Song et al. [86] propose to employ voxel- and channel-wise attention over the visual 3D feature maps to improve
visual features and cross-modal correlation.

Wu and Han [103] propose a multi-modal circulant fusion (MCF) in contrast to the simple fusion ways employed
in CTRL including element-wise product, element-wise sum, and concatenation. MCF extends the visual/textual
vector to the circulant matrix, which can fully exploit the interactions of the visual and textual representations.
By plugging MCF into CTRL, the grounding accuracy is further improved.

Previous works like CTRL, ACRN and MCF directly calculate the visual-semantic correlation without explicitly
modelling the activity information within two modalities, and the candidate segments fairly sampled by sliding
window may contain various meaningless noisy contents which do not contain any activity. Hence, Ge et al. [32]
explicitly mine activity concepts from both visual and textual parts as prior knowledge to provide an actionness
score for each candidate segment, relecting how conident it contains activities, which enhances the localization
accuracy. MMRG [126] employs a multi-modal relational graph explicitly considering the interactions among
visual and textual objects. It also designs customized pre-training tasks to enhance the visual representations.

Despite the simplicity and efectiveness of such sliding window-based methods, they sufer from ineicient
computation since there are too many overlapped areas re-computed due to the densely sampling process with
predeined multi-scale sliding windows.
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Fig. 5. The structure of uery-guided Segment Proposal Network (QSPN), including the query-guided segment proposal

network (c.f ., 5(a)) and a fine-grained early-fused similarity model for retrieval (c.f ., 5(b)), figures from [108].

2.1.2 proposal-generated. Considering the inevitable drawbacks of sliding window-based methods, some ap-
proaches devote to reduce the number of proposal candidates, namely proposal-generated method. Such proposal-
generated methods still adopt a two-stage scheme but avoid densely sliding window sampling through diferent
kinds of proposal networks.
QSPN [108] relieves such a computation burden by proposing temporal segments conditioned on the query

so as to reduce the number of candidate segments (c.f ., Fig. 5). As shown in Fig. 5(a), the query-guided SPN
irst incorporates the query embeddings into the video features to get the attention weight for each temporal
location, and further integrates the temporal attention weights into the convolutional process for video encoding
to propose query-aware representations of candidate segments. Afterwards, the generated proposal visual feature
from Fig. 5(a) is incorporated into the sentence embedding process at each time step of the second layer of the
two-layer LSTM in an early fusion way (c.f ., Fig. 5(b)). QSPN devises a triplet-based retrieval loss which is similar
to MCN:

L��� =

︁

(�,�,�′ )

max{0, � + � (�, �′) − � (�, �)} , (4)

where (�, �) is the positive (sentence, segment) pair while �′ is the sampled negative segment. QSPN also devises
an auxiliary captioning task which re-generate the query sentence from the retrieved video segment. The loss for
captioning is as follows:

L��� = −
1

��

�︁

�=1

��︁

�=1

log � (��� |� (�), ℎ
(2)
�−1,�

�
1 , . . . ,�

�
�−1) , (5)

where a standard captioning loss is introduced to maximize the normalized log-likelihood of the words generated
at all T unrolled time steps, over all K groundtruth matching query-moment pairs.

Similarly, SAP proposed by Chen and Jiang [15] integrates the semantic information of sentence queries into
the generation process of activity proposals. Speciically, the visual concepts extracted from the query sentence
and video frames are used to compute visual-semantic correlation score for every frame. Activity proposals are
generated by grouping frames with high visual-semantic correlation scores.
Summary. Despite the intuitiveness and success of this two-stage matching-based paradigm, it also has some
drawbacks. In order to achieve high localization accuracy (i.e., the candidate pool should have at least one proposal
that is close to the groundtruth moment), the duration and location distribution of the candidate moments should
be diverse, thus inevitably increasing the number of candidates, which leads to ineicient computation of the
subsequent matching process.
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2.2 Single-stage method

The single-stage model follows one single-pass pattern. We divide it into two types, i.e., anchor-based and
anchor-free, based on whether the method uses anchors (i.e., proposals) to make predictions.

Fig. 6. The architecture of TGN, adopting a frame-by-word

interaction single-stream framework. The grounder would gen-

erate multi-scale grounding candidates (anchors) that end at

the same time step, figure from [11].

2.2.1 anchor-based. Anchor-based methods employ
diferent types of anchors (e.g., Conv-styled, RNN-
styled) to yield candidate moments. TGN [11] adopts
a typical single-stage deep architecture, which can
localize the target moment in one single pass with-
out handling heavily overlapped pre-segmented can-
didate moments. As shown in Fig. 6, TGN dynamically
matches the sentence and video units via a sequential
LSTM grounder with ine-grained frame-by-word in-
teraction, and at each time step, the grounder would
simultaneously score a group of candidate segments
with diferent temporal scales ending at this time step.

CMIN [136] sequentially scores a set of candidate
moments of multi-scale anchors like TGN but with
a sequential BiGRU network, and reines the candi-
date moments with boundary regression. To further
enhance the cross-modal matching, it devises a novel
cross-modal interaction network, which irst leverages
a syntactic GCN to model the syntactic structure of
queries, and captures long-range temporal dependen-
cies of video context with a multi-head self-attention
module.

Likewise, CBP [97] builds a single-streammodel with sequential LSTM, which jointly predicts temporal anchors
and boundaries at each time step to yield precise localization. To better detect semantic boundaries, CBP devises
a self-attention based module to collect contextual clues instead of simply concatenating the contextual features
like [29, 32, 38].

CSMGAN [56] also adopts such a single-pass scheme. It builds a joint graph for modelling the cross-/self-modal
relations via iterative message passing, to capture the high-order interactions between two modalities efectively.
Each node of the graph aggregates the messages from its neighbor nodes in an edge-weighted manner and
updates its state with both aggregated message and current state through ConvGRU. Qu et al. [74] present a
ine-grained iterative attention network (FIAN), which devises a content-oriented strategy to generate candidate
moments difering from the anchor-based methods with sequential RNNs mentioned above. FIAN employs a
reined cross-modal guided attention block to capture the detailed cross-modal interactions, and further adopts a
symmetrical iterative attention to generate both sentence-aware video and video-aware sentence representations.
TGN establishes the temporal grounding architecture through a sequential LSTM network, while Yuan et

al. [122] propose SCDM, which exploits a hierarchical temporal convolutional network to conduct target segment
localization, and couples it with a semantics-conditioned dynamic modulation to fully leverage sentence semantics
to compose the sentence-related video contents over time. As shown in Fig. 7, the multimodal fusion module
fuses the entire sentence and each video clip in a ine-grained manner. The fused representation is formulated as:

f� = ReLU(W� (v� | |s̄) + b� ) . (6)
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Fig. 7. The architecture of SCDM, which couples semantics-conditioned dynamic modulation into the temporal convolutional

network to correlate the sentence-aware video contents over time, figure from [122].

With such fused representations as inputs, the semantic modulated temporal convolutionmodule further correlates
sentence-related video contents in a temporal convolution procedure, dynamically modulating the temporal
feature maps conditioned on the sentence. Speciically, for each temporal convolutional layer, the feature map is
denoted as A = {a� }. The feature unit a� will be modulated based on the modulation vectors ��� and �

�
� :

â� = �
�
� ·

a� − � (A)

� (A)
+ ��� , (7)

where the modulation vectors are computed based on the sentence representation S = {s�}
�
�=1:

��� = softmax(w� tanh(W�s� +W�a� + b)) , c� =

�︁

�=1

��� s� ,

��� = tanh(W�c� + b� ) , ��� = tanh(W�c� + b� ) .

(8)

Finally, the position prediction module outputs the location ofsets and overlap scores of candidate video segments
based on the modulated features. Similar to SCDM, RMN [54] also correlates video contents conditioned on the
query semantics via a modulation module, and it further employs a cascade of several rectiication-modulation
layers for multi-step reasoning.
MAN [128] leverages temporal convolutional network to address the TSGV task as well, where the sentence

query is integrated as dynamic ilters into the convolutional process. Speciically, MAN encodes the entire video
stream using a hierarchical convolutional network to produce multi-scale candidate moment representations. The
textual features are encoded as dynamic ilters and convolved with such visual representations. Additionally, MAN
exploits the graph-structured moment relation modelling adapted from Graph Convolution Network (GCN) [46]
for temporal reasoning to further improve the moment representations. Similar to MAN, Soldan et al. [85] also
adopt GCN and present a video-language graph matching network (VLG-Net) for modelling the ine-grained
inter-modal interaction.
Both SCDM and MAN only consider 1D temporal feature maps, while the 2D-TAN [134] network models

the temporal relations of video segments via a two-dimensional map. As shown in Fig. 8, it irstly divides the
video into evenly spaced video clips with duration � . The (�, � )-th location on the 2D temporal map represents a
candidate moment (or anchor) from the time �� to ( � + 1)� . This kind of 2D temporal map covers diverse video
moments with diferent lengths, while representing their adjacent relations. The proposed temporal adjacent
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Fig. 8. The architecture of 2D temporal adjacent network (2D-TAN), which consists of a text encoder for language representa-

tion, a 2D temporal feature map extractor for video representation and a temporal adjacent network for moment localization,

figure from [134].

network fuses the sentence representation with each of the candidate moment features and then leverages
convolutional neural network to embed the video context information, and inally predicts the conidence score
of each candidate to be the inal target segment.
Some works [9, 30, 96, 133] also adopt the same proposal generation approach as that of 2D-TAN. Wang et

al. [96] propose a structured multi-level interaction network (SMIN), which makes further modiications on
the 2D temporal feature map as its proposal generation module. SMRN [9] adds a residual connection within
the hierarchical convolution network of 2D-TAN and further utilizes the query semantics to modulate short
connections within residual blocks. Zhang et al. [133] present a visual-language transformer backbone followed
by a multi-stage aggregation module to get discriminative moment representations for more accurate localization.
Gao et al. [30] design a ine-grained semantic distillation framework for retrieving desired moments with
superiority in both accuracy and eiciency.
It is worth noting that Bao et al. [3] present an anchor-based dense events propagation network (DepNet)

for a more challenging task namely dense events grounding, which aims to localize multiple moments given
a paragraph. DepNet aggregates the visual-semantic information of dense events into a compact set and then
propagates it to localize each single event, thus fully exploiting the temporal relationships between dense events.
Despite the superior performance anchor-based methods have achieved, the performance is sensitive with

the heuristic rules manually designed (i.e., the number and scales of anchors). As a result, such anchor-based
methods can not adapt to the situation with variable video length. Meanwhile, although the pre-segmentation
like two-stage methods is not required, it still essentially depends on the ranking of proposal candidates, which
will also inluence its eiciency.

2.2.2 anchor-free. Instead of ranking a vast number of proposal candidates, the anchor-free methods start from
more ine-grained video units such as frames or clips, and aim to predict the probability for each frame/clip being
the start and end point of the target segment, or directly regress the start and end points from the global view.
Yuan et al. [124] propose ABLR, which solves TSGV from a global perspective without generating anchors.

Speciically, as shown in Fig. 9, to preserve the context information, ABLR irst encodes both video and sentence
via bidirectional LSTM networks. Then, a multi-modal co-attention mechanism is introduced to generate not only
video attention which relects the global video structure, but also sentence attention which highlights the crucial
details for temporal localization. Finally, an attention-based coordinates prediction module is designed to regress
the temporal coordinates (i.e. the starting timestamp �� and the ending timestamp �� ) of sentence query from the
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Fig. 9. The architecture of Atention Based Location Regression (ABLR) model, which regresses the target coordinates with a

multi-modal co-atention mechanism, figure from [124].

Fig. 10. The architecture of ExCL. It consists of three modules: a sentence encoder (shown in orange squares), a video

encoder (shown in blue squares) and three variants of frame predictor (i.e., MLP, Tied-LSTM and Conditioned-LSTM). The

frame predictor outputs the start and end probabilities for each frame, figure from [33].

former output attentions. Meanwhile, there are two diferent regression strategies (i.e., attention weight-based

regression and attended feature-based regression) with the location regression loss �������� =
∑�
�=1 [�(�̃

�
� − �

�
� ) +

�(�̃�� − ��� )], where � is a smooth L1 function. Besides the location regression loss that aims to minimize the
distance between the temporal coordinates of the predicted and the groundtruth segments, ABLR also designs an
attention calibration loss L��� to get the video attentions more accurately:

L��� = −

�︁

�=1

∑�
�=1��, � log(�

��
� )

∑�
�=1��, �

. (9)

Here, L��� encourages the attention weights of the video clips within the groundtruth segment to be higher.
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LGI [68] formulates the TSGV task as the attention-based location regression like ABLR. It further presents a
more efective local-global video-text interaction module, which models the multi-level interactions between
semantic phrases and video segments. Chen et al. [14] propose pairwise modality interaction (PMI) via a channel-
gated modality interaction model to explicitly model the channel-level and sequence-level interactions in a
pairwise fashion. Speciically, a light-weight convolutional network is applied as the localization head to process
the feature sequence and output the video-text relevance score and boundary prediction. HVTG [16] also computes
the frame-level relevance scores and makes boundary prediction based on these scores. To perform the ine-
grained interaction among the visual objects and between the visual object and the language query, HVTG
devises a hierarchical visual-textual graph to encode the features.
Unlike ABLR that regresses the coordinates of target moment directly, ExCL [33] borrows the idea from the

Reading Comprehension task [10] in natural language processing area. The process of retrieving a video segment
from the video is analogous to extract a text span from the passage. Speciically, as shown in Fig. 10, ExCL employs
three diferent variants of start-end frame predictor networks (i.e., MLP, Tied-LSTM and Conditioned-LSTM) to
predict start and end probabilities for each frame.
Likewise, VSLNet [130] employs a standard span-based Question Answering framework. VSLNet further

distinguishes the diferences between video sequence and text passage for better adaption to TSGV task. To
address the diferences, it designs a query-guided highlighting strategy to narrow down the search space to a
smaller coarse highlight region. L-Net [12] introduces a boundary model to predict the start and end boundaries,
semantically localizing the video segment given the language query. It devises a cross-gated attended recurrent
network to emphasize the relevant video parts while the irrelevant ones are gated out, and a cross-modal interactor
for ine-grained interactions between two modalities.

TMLGA [76] also predicts start and end probabilities for each video unit. It further models the uncertainty of
boundary labels, using two Gaussian distributions as groundtruth probability distributions. CPN [141] devises a
cascaded prediction network based on the segment-tree data structure. It performs two sub-tasks (i.e., decision
navigation and signal decomposition) on each level from top to down for inal boundary prediction. PEARL [132]
integrates the subtitles of videos and convolves the query ilters into the visual and subtitle branches to locate
the boundaries.

Fig. 11. The architecture of DEBUG, consisting of a backbone

framework (QANet) to model the multimodal interaction and

a head module with three branches for dense regression, figure

from [60].

Lu et al. [60] propose a dense bottom-up grounding
framework (DEBUG), which localizes the target seg-
ment by predicting the distances to bidirectional tem-
poral boundaries for all frames inside the groundtruth
segment. In this way, all frames inside the groundtruth
segment can be seen as positive samples, alleviating
the severe imbalance issue caused by only regarding
the groundtruth segment boundaries as positive sam-
ples. As shown in Fig. 11, a typical dense anchor-free
model usually contains a backbone framework for
multimodal feature encoding and a head network for
frame-level predictions. Speciically, DEBUG adopts
QANet as its backbone network which models the
interaction between videos and queries, and designs
three branches as head networks which aim to sepa-
rately predict the classiication score, boundary distances, and conidence score for each frame.

Similarly, DRN [125] and GDP [13] also adopt such a dense anchor-free framework. For backbone, DRN uses
a video-query interaction module to obtain fused hierarchical feature maps. For head network, DRN densely
predicts the distances to boundaries, matching score and estimated IoU for each frame within the groundtruth
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segment. Meanwhile, for backbone, GDP leverages a Graph-FPN layer which conducts graph convolution over all
nodes in the scene space to enhance the integrated frame features. For head network, GDP predicts the distances
from its location to the boundaries of target moment and a conidence score to rank its boundary prediction for
each frame.
Another graph-based method DORi [77] utilizes a spatio-temporal graph to model the temporally-changing

inter-object interactive relationships based on the language query, which can further improve the activity
representations. Instead of adopting well-designed graph-based structures, Yu et al. [119] propose a simple
yet efective approach that only conducts bi-directional cross-modal interaction via multi-head attention with
multiple training objectives.
Compared with anchor-based methods, the anchor-free methods are obviously computation-eicient and

robust to variable video duration. Despite these signiicant advantages, it is diicult for anchor-free methods to
capture segment-level features for multimodal interactions.

Other Single-stage Methods. Diferent from the aforementioned single-stage methods which either samples
from multi-scale anchors or directly regresses the inal coordinates, some methods out of these patterns have
emerged. The boundary proposal network (BPNet) [106] keeps the advantages of both anchor-based and anchor-
free methods and avoids the defects, which generates proposals by anchor-free methods and then matches
them with the sentence query in an anchor-based manner. Wang et al. [95] propose a dual path interaction
network (DPIN) containing two branches (i.e., a boundary prediction pathway for frame-level features and an
alignment pathway for segment-level features) to complementarily localize the target moment. Inspired from the
dependency tree parsing task in natural language processing community, a biaine-based architecture named
context-aware biaine localizing network (CBLN) [55] has been proposed which can simultaneously score all
possible pairs of start and end indices. Ding et al. [25] introduce a support-set cross-supervision (Sscs) module.
The Sscs module can be a plug-in branch to enhance multi-modal relation modelling for both anchor-based and
anchor-free methods.

2.3 Reinforcement learning-based method

As another kind of anchor-free approach, RL-based frameworks view such a task as a sequential decision process.
The action space for each step is a set of handcraft-designed temporal transformations (e.g., shifting, scaling).

He et al. [36] irst introduce deep reinforcement learning techniques to address the task of TSGV, which
formulates TSGV as a sequential decisionmaking problem. As depicted in Fig. 12, at each time step, the observation
network outputs the current state of the environment for the actor-critic module to generate an action policy (i.e.,
the probabilistic distribution of all the actions predeined in the action space), based on which the agent will
perform an action to adjust the temporal boundaries. This iterative process will be ended when encountering
the STOP action or reaching the maximum number of steps (i.e., ���� ). Speciically, at each step, the current

state vector is computed as � (� ) = Φ(�,�� ,�
(�−1)
�

, � (�−1) ) , where � (� ) is generated by one FC layer whose
inputs are the concatenated features including the segment-speciic features (i.e., the normalized boundary pair

� (�−1) = [�
(�−1)
� , �

(�−1)
� ] and local segment C3D feature�

(�−1)
�

) and global features (i.e., the sentence embedding �
and entire video C3D feature �� ). Then the actor-critic module employs GRU to model the sequential decision
making process. At each time step, GRU takes � (� ) as input and the hidden state is used for policy (denoted

as � (�
(� )
� |� (� ) , �� )) generation and state-value (denoted as � (� (� ) |��)) estimation. The reward for each step �� is

designed to encourage a higher tIoU compared to that of the last step. The accumulated reward function is then
deined as (� is a constant discount factor):

�� =

{

�� + � ∗ � (�
(� ) |��), � = ����

�� + � ∗ ��+1, � = 1, 2, . . . ,���� − 1
. (10)
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Fig. 12. The architecture of R-W-M framework. The observation network takes the environment (i.e., description feature,

global video feature, local feature and location feature) as input to compute current state. Then one of those seven operators

in the action space is determined to adjust the temporal boundaries of current segment. Two auxiliary supervised tasks

including tIoU regression and location regression are also leveraged, figure from [36].

Then they introduce the advantage function as objective which is approximated by the Mente Carlo sampling to
get the policy gradient:

L′
� (�� ) = −

︁

�

(log� (�
(� )
� |� (� ) , �� )) (�� − � (�

(� ) |��)) . (11)

They further leverage two supervised tasks (i.e., tIoU regression and location regression) so the parameters can
be updated from both policy gradient and supervised gradient to help the agent obtain more accurate information
about the environment.

Wang et al. [100] propose an RNN-based RL model which sequentially observes a selective set of video frames
and inally obtains the temporal boundaries given the query. Cao et al. [6] irstly leverage the spatial scene
tracking task, which utilizes a spatial-level RL for iltering out the information that is not relevant to the text
query. The spatial-level RL can enhance the temporal-level RL for adjusting the temporal boundaries of the
video. TripNet [35] uses gated attention to align textual and visual features, leading to improved accuracy. It
incorporates a policy network for eicient search, which selects a ixed temporal bounding box moving around
without watching the entire video.

TSP-PRL [105] adopts a tree-structured policy that is diferent from conventional RL-based methods, inspired
by a human’s coarse-to-ine decision-making paradigm. The agent receives the state from the environment (video
clips) and estimates a primitive action via tree-structured policy, including root policy and leaf policy. The
action selection is depicted by a switch over the interface in the tree-structured policy. The alignment network
will predict a conidence score to determine when to stop. Meanwhile, AVMR [7] addresses TSGV under the
adversarial learning paradigm, which designs an RL-based proposal generator to generate proposal candidates
and employs Bayesian Personalized Ranking as a discriminator to rank these generated moment proposals in a
pairwise manner.

2.4 Weakly supervised method

For the annotation of groundtruth data in TSGV, the annotators should read the query and watch the video irst,
and then determine the start and end points of the query-indicated segment in the video. Such a human-labored
process is very time-consuming. Therefore, due to the labor-intensive groundtruth annotation procedure, some
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Fig. 13. The overall framework of TGA. It learns a joint embedding network to align the text and video features. The global

video representation is generated by weighted pooling based on text-guided atentions, figure from [67].

works start to extend TSGV to a weakly supervised scenario where the locations of groundtruth segments (i.e.,
the start and end timestamps) are unavailable in the training stage. This is formally named as weakly supervised
TSGV. In general, weakly supervised methods for TSGV can be grouped into two categories (i.e., MIL-based and
reconstruction-based). One representative work will be illustrated in detail for each category, after which we will
introduce the remaining.
Some works [20, 31, 67, 91] adopt multi-instance learning (MIL) to address the weakly TSGV task. When

temporal annotations are not available, the whole video is treated as a bag of instances with bag-level annotations,
and the predictions for instances (video segment proposals) are aggregated as the bag-level prediction.

TGA [67] is a typical MIL-based method which learns the visual-text alignment in the video level by maximizing
the matching scores of the videos and their corresponding descriptions while minimizing the matching scores
of the videos and the descriptions of others. It presents text-guided attention (TGA) to get text-speciic global
video representations, learning the joint representation of both the video and the video-level description. As
illustrated in Fig. 13, TGA irst employs a GRU for sentence embedding and a pretrained image encoder for
extracting frame-level features. The similarity between ��ℎ sentence and the ��ℎ temporal feature within the ��ℎ

video denoted as ��
� �

is computed and a softmax opration is applied to get the text-guided attention weights for

each temporal unit denoted as ��
� �
:

��� � =
w��
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�
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Thus we could get the sentence-wise global video feature f�� =
∑���
�=1

��
� �
v�
�
.

WSLLN [31] is another MIL-based end-to-end weakly supervised language localization network conducting clip-
sentence alignment and segment selection simultaneously. Huang et al. [41] present a cross-sentence relations
mining (CRM) method exploring the cross-sentence relations within paragraph-level scope to improve the
per-sentence localization accuracy.
A video-language alignment network (VLANet) proposed by Ma et al. [63] prunes the irrelevant moment

candidates with the Surrogate Proposal Module and utilizes multi-directional attention to get a sharper attention
map for better multimodal alignment. Wu et al. [104] attempt to apply an RL-based model for weakly TSGV, which
proposes a boundary adaptive reinement framework (BAR) for achieving boundary-lexible and content-aware
grounding results. Chen et al. [20] propose a novel coarse-to-ine model (WSTG) based on MIL. First, the coarse
stage selects a rough segment from a set of predeined sliding windows, which semantically corresponds to the
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given sentence. Afterwards, the ine stage mines the ine-grained matching relationship between each frame in
the coarse segment and the sentence. It thereby reines the boundary of the coarse segment by grouping the
frames and gets more precise grounding results.
Tan et al. [91] propose a Latent Graph Co-Attention Network (LoGAN), a novel co-attention model that

performs ine-grained semantic reasoning over an entire video. LoGAN is also a MIL-based method, which
performs a similar frame-by-word interaction with the supervised method TGN [11] and adapts the graph module
from another supervised method MAN [128] for iterative frame representation update. Wang et al. [101] present a
ine-grained semantic alignment network (FSAN), which enables iterative multi-head attention based cross-modal
interaction to capture ine-grained video-language alignment. In order to learn more robust and discriminative
moment features, VCA [102] devises a visual co-occurrence alignment NCE loss that maximizes the similarity
between video moments from diferent videos with similar descriptions.
Since MIL-based methods typically learn the visual-text alignment with a triplet loss, these methods heavily

depend on the quality of randomly-selected negative samples, which are often easy to distinguish from the
positive ones and cannot provide strong supervision signals.
The reconstruction-based methods [17, 26, 52, 87] attempt to reconstruct the given sentence query based on

the selected video segments and use the intermediate results for sentence localization. Unlike MIL-based methods,
the reconstruction-based methods learn the visual-textual alignment in an indirect way. Lin et al. [52] propose
a semantic completion network (SCN) to predict the masked important words within the query according to
the visual context of generated and selected video proposals. Speciically, for each proposal �� , denoted by
v̂� = {v� }

��
�=��

, with the masked query representation �̂, the energy word distribution e�� at ��ℎ time step can

be computed as e�� = W�f
�
� + b� , where f

�
= {f�� }

��
�=1 are the cross-modal semantic representations, computed

by f� = Dec� (q̂, Enc� (v̂
� )) , Dec� and Enc� are respectively the textual decoder and visual encoder based on

bi-directional Transformer [94]. Afterwards, the reconstruction loss can be computed by adding up all negative
log-likelihood of masked words:

L�
��� = −

��−1︁

�=1

log� (w�+1 |ŵ1:� , v̂
� ) = −

��−1︁

�=1

log� (w�+1 |e
�
� ) . (13)

Song et al. [87] present a Multi-Level Attentional Reconstruction Network (MARN), which leverages the idea
of attentional reconstruction. MARN uses proposal-level attentions to rank the segment candidates and reine
them with clip-level attentions.

Duan et al. [26] formulate and address the problem of weakly supervised dense event captioning in videos (i.e.,
to detect and describe all events of interest in a video), which is a dual problem of weakly supervised TSGV. It
presents a cycle system to train the model which can solve such a pair of dual problems at the same time. In
other words, weakly supervised TSGV can be regarded as an intermediate task in such a cycle system. Similar to
[26], Chen and Jiang [17] also employ a loop system for dense event captioning. They adopt a concept learner to
construct an induced set of concept features to enhance the information passing between the sentence localizer
and event captioner.
Besides, instead of proposing a reconstruction-based or MIL-based method, Zhang et al. [138] design a

counterfactual contrastive learning paradigm to improve the visual-and-language grounding tasks. A regularized
two-branch proposal network (RTBPN) [137] is also presented to explore suicient intra-sample confrontment
with sharable two-branch proposal module for distinguishing the target moment from plausible negative moments.

3 DATASETS AND EVALUATIONS

In this section, we present benchmark datasets and evaluation metrics for TSGV, and provide detailed performance
comparisons among the above mentioned approaches.
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Table 1. The statistics of videos and annotations of the benchmark datasets.

Video Statistics Annotation Statistics

# Videos
Aver.

Video Duration(s)
Domain Video Source # Queries # Moments

Aver.
Moment Duration(s)

Aver.
Query Length

DiDeMo 10,642 29.3 Open Flickr 41,206 28,925 6.9 7.5
TACoS 127 286.6 Cooking Lab Kitchen 18,227 7,069 27.9 9.4
Charades-STA 9,848 30.6 Indoor activity Activity 16,124 11,767 8.1 6.2
ActivityNet Captions 14,926 117.6 Open Activity 71,957 71,718 37.1 14.4

3.1 Datasets

Several datasets for TSGV from diferent scenarios with their distinct characteristics have been proposed in the
past few years. There is no doubt that the efort of creating these datasets and designing corresponding evaluation
metrics do promote the development of TSGV. Table 1 and Table 2 provide an overview about the statistics of
public datasets. Table 1 gives an overall introduction about the videos and annotated query-moment pairs. As we
can see that some datasets (i.e., TACoS, Charades-STA) are constrained in a narrow and speciic scene (e.g., kitchen
or indoor activity), while others (i.e., DiDeMo, ActivityNet Captions) involve more complicated activities in open
domains. Since each query refers to exactly one moment but multiple queries may refer to the same moment (a
moment here means a video segment which can be identiied by a {video id, start timestamp, end timestamp}
triplet), the number of queries would be equal to the number of all samples (query-moment pairs) while the
number of moments would be less than that, which is actually the number of unique {video id, start timestamp, end
timestamp} triplets. Moreover, the detailed language statistics are reported in Table 2. Larger vocabulary size and
average number of verbs/adjectives/nouns tokens indicate greater challenges in textual semantic understanding.
Obviously, the sentences in ActivityNet Captions are the most diicult and those of Charades-STA are relatively
simple with the smallest action (verb) set. We will introduce these four datasets more concretely as follows.

Table 2. Language statistics of the benchmark datasets.

Vocabulary Statistics
(Number of Used Unique Tokens

Sentence Statistics
(Aver. Number per Query)

Verb Adjectives Nouns Verbs Adjectives Nouns

DiDeMo 1.50K 1.40K 4.30K 1.20 0.58 2.64
TACoS 0.58K 0.42K 0.98K 1.48 0.23 2.64
Charades-STA 0.25K 0.17K 0.63K 1.26 0.06 2.40
ActivityNet Captions 2.60K 2.90K 8.90K 2.56 0.66 3.73

DiDeMo [38]. This dataset is collected from
Flickr, and consists of various human activi-
ties uploaded by personal users. Hendricks et
al. [38] split and label video segments from
original untrimmed videos by aggregating ive-
second clip units, which means the lengths of
groundtruth segments are times of ive seconds.
They claim that this trick is for avoiding ambi-
guity of labeling and accelerating the validation
process. However, such a length-ixed issue makes the retrieval task easier since it compresses the searching
space into a set with limited candidates. The data split is also provided by [38], with 33,005/4,180/4,021 video-
sentence pairs for training/validation/test, respectively. Besides, a new dataset TEMPO [37] involving more
temporally-related events is collected based on the DiDeMo, which is explored by some works as well [88, 135].

TACoS [75]. TACoS is built based on MPII-Compositive dataset [78]. It contains 127 complex videos featuring
cooking activities, and each video has several segments being annotated by sentence descriptions illustrating
people’s cooking actions. The average length of videos in TACoS is around 300s, which is much longer than that
of other benchmark datasets. The total amount of query-moment pairs is 18,227 in this dataset, and 50%, 25%,
25% of which are used for training, validation, and test, respectively.

Charades-STA [29]. Charades-STA is built upon Charades [83], which is originally collected for video activity
recognition, and consists of 9,848 videos depicting human daily indoor activities. Speciically, Charades contains
157 activity categories and 27,847 video-level sentence descriptions. Based on Charades, Gao et al. [29] construct
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Charades-STA with a semi-automatic pipeline, which parses the activity label out of the video description irst
and aligns the description with the original label-indicated temporal intervals. As such, the yielded (description,
interval) pairs can be seen as the (sentence query, target segment) pairs for TSGV. Since the length of original
description in Charades-STA is quite short, Gao et al. [29] further enhance the complexity of the description by
combining consecutive descriptions into a more complex sentence for test.
ActivityNet Captions [47]. ActivityNet Captions is originally proposed for dense video captioning upon

ActivityNet dataset [5], and the query-moment pairs in this dataset can naturally be utilized for TSGV. ActivityNet
Captions contains the largest amount of videos, and it aligns videos with a series of temporally annotated sentence
descriptions. On average, each of the 20k videos contains 3.65 temporally localized sentences, resulting in a total
of 100k sentences. Each sentence has an average length of 13.48 words. The sentence length is also normally
distributed. Since the oicial test set is withheld for competitions, most TSGV works merge the two available
validation subsets łval1ž and łval2ž as the test set. In summary, there are 10,009 videos and 37,421 query-moment
pairs in the training set, and 4,917 videos and 34,536 query-moment pairs in the test set.

3.2 Metrics

groundtruth moment

prediction moment

  IoU =
Intersection Area

Union Area

Fig. 14. The illustration of Temporal IoU (Intersection

over Union).

There are two types of metrics for TSGV, i.e., R@�,IoU=�
and mIoU, both of which are irst introduced for TSGV in
[29]. Since IoU (Intersection over Union) is widely used
in object detection to measure the similarity between two
bounding boxes, similarly for TSGV, as illustrated in Fig. 14,
many TSGV methods adopt temporal IoU to measure the
similarity between the groundtruth moment and the pre-
dicted one. The ratio of intersection area over union area
ranges from 0 to 1, and it will be equal to 1 when these two
moments are totally overlapped.
Thereby, one of the metrics is mIoU (i.e., mean IoU), a

simple way to evaluate the results through averaging tem-
poral IoUs of all samples. The other commonly-used metric
is R@�, IoU=� [40]. As for sample � , it is accounted as positive when there exists one segment out of top �
retrieved segments whose temporal IoU with the groundtruth segment is over �, which can be denoted as
� (�,�,�� ) = 1. Otherwise, � (�,�,�� ) = 0. R@�, IoU=� is the percentage of positive samples over all samples (i.e.,
1
��

∑

� � (�,�,�� )).

The community is accustomed to setting � ∈ {1, 5, 10} and� ∈ {0.3, 0.5, 0.7}. Usually, � = 1 when the method
adopts a proposal-free manner (i.e., belongs to either anchor-free or RL-based frameworks). Moreover, it is worth
noting that MCN [38] adopts a particular metric with the IoU threshold� = 1.0 since the groundtruth segments
in DiDeMo is generated by aggregating the clip units of ive seconds, and MCN also employs a matching-based
method thus the predicted moment has chance to fully coincide with the target moment, satisfying such a high
IoU threshold.

3.3 Performance Comparison

In this section, we give a thorough performance comparison of the aforementioned approaches based on four
benchmark datasets. For convenience and fairness, we uniformly adopt � = 1 and � ∈ {0.3, 0.5, 0.7} for the
metric of R@�,IoU=�. Though diferent types of extracted visual features may inluence the grounding accuracy,
we uniformly report the best results for each method as reported in literature. Table 3 lists all the experimental
results grouped by their categories (i.e., belonging to two-stage, single-stage, RL-based or weakly supervised
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Table 3. The performance comparison of all TSGV methods grouped by their categories (SW:sliding window-based,

PG:proposal-generated, AB:anchor-based, AF:anchor-free, OT:other single-stage methods, RL:RL-based, WS:weakly su-

pervised).

Type Method
DiDeMo TACoS Charades-STA ActivityNet Captions

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

SW

MCN [38] - - - - - - 13.57 4.05 - - - -
CTRL [29] - - - 18.32 13.3 - - 21.42 7.15 - - -
MCF [103] - - - 18.64 12.53 - - - - - - -
ROLE [58] 29.4 15.68 - - - - 25.26 12.12 - - - -
ACRN [57] - - - 19.52 14.62 - - - - - - -
SLTA [42] - 30.92 17.16 17.07 11.92 - 38.96 22.81 8.25 - - -
VAL [86] - - - 19.76 14.74 - - 23.12 9.16 - - -

ACL-K [32] - - - 24.17 20.01 - - 30.48 12.2 - - -
MMRG [126] - - - 57.83 39.28 - 71.6 44.25 - - - -

PG
QSPN [108] - - - - - - 54.7 35.6 15.8 45.3 27.7 13.6
SAP [15] - - - - 18.24 - - 27.42 13.36 - - -

AB

TGN [11] - - - 21.77 18.9 - - - - 45.51 28.47 -
MAN [128] - - - - - - - 46.53 22.72 - - -
CMIN [136] - - 24.64 18.05 - - - - 63.61 43.4 23.88
SCDM [122] - - - 26.11 21.17 - - 54.44 33.43 54.8 36.75 19.86
CBP [97] - - - 27.31 24.79 19.1 - 36.8 18.87 54.3 35.76 17.8

2D-TAN [134] - - - 37.29 25.32 - - 39.7 23.31 59.45 44.51 26.54
FVMR [30] - - - 41.48 29.12 - - 55.01 33.74 60.63 45 26.85
SMRN [9] - - - 42.49 32.07 - - 43.58 25.22 - 42.97 26.79
RMN [54] - - - 32.21 25.61 - - 59.13 36.98 67.01 47.41 27.21
FIAN [74] - - - 33.87 28.58 - - 58.55 37.72 64.1 47.9 29.81

CSMGAN [56] - - - 33.9 27.09 - - - - 68.52 49.11 29.15
SMIN [96] - - - 48.01 35.24 - - 64.06 40.75 - 48.46 30.34

Zhang et al. [133] - - - 48.79 37.57 - - - - - 48.02 31.78
VLG-Net [85] 25.57 71.65 - 45.46 34.19 - - - - - 46.32 29.82

AF

ABLR [124] - - - 18.9 9.3 - - - - 55.67 36.79 -
DEBUG [60] - - - 23.45 - - 54.95 37.39 17.69 55.91 39.72 -
GDP [13] - - - 24.14 - - 54.54 39.47 18.49 56.17 39.27 -
PMI [14] - - - - - 55.48 39.73 19.27 59.69 38.28 17.83
ExCL [33] - - - 44.4 27.8 14.6 61.4 41.2 21.3 62.1 41.6 23.9
DRN [125] - - - - 23.17 - - 45.4 26.4 - 42.49 22.25
HVTG [16] - - - - - - 61.37 47.27 23.3 57.6 40.15 18.27
TMLGA [76] - - - 24.54 21.65 16.46 67.53 52.02 33.74 51.28 33.04 19.26
LGI [68] - - - - - - 72.96 59.46 35.48 58.52 41.51 23.07

VSLNet [130] - - - 29.61 24.27 20.03 70.46 54.19 35.22 63.16 43.22 26.16
CPN [141] - - - 47.69 36.33 21.58 75.53 59.77 36.67 62.81 45.1 28.1
DORi [77] - - - 31.8 28.69 24.91 72.72 59.65 40.56 57.89 41.35 26.41

CI-MHA [119] - - - - - - 69.87 54.68 35.27 61.49 43.97 25.13
PEARL [132] - - - 42.94 32.07 18.37 71.9 53.5 35.4 - - -

OT
BPNet [106] - - - 25.96 20.96 14.08 55.46 38.25 20.51 58.98 42.07 24.69
DPIN [95] - - - 46.74 32.92 - - 47.98 26.96 62.4 47.27 28.31
CBLN [55] - - - 38.98 27.65 - - 61.13 38.22 66.34 48.12 27.6

RL

R-W-M [36] - - - - - - - 36.7 - - 36.9 -
SM-RL [100] - - - 20.25 15.95 - - 24.36 11.17 - - -
TripNet [35] - - - - - - 51.33 36.61 14.5 48.42 32.19 13.93
TSP-PRL [105] - - - - - - - 45.45 24.75 56.02 38.82 -
STRONG [6] - - - 72.14 49.73 18.29 78.1 50.14 19.3 - - -
AVMR [7] - - - 72.16 49.13 - 77.72 54.59 - - - -

WS

WSDEC [26] - - - - - - - - - 41.98 23.34 -
TGA [67] - - - - - - 32.14 19.94 8.84 - - -

WSLLN [31] - - - - - - - - - 42.8 22.7 -
EC-SL [17] - - - - - - - - - 44.29 24.16 -
SCN [52] - - - - - - 42.96 23.58 9.97 47.23 29.22 -

WSTG et al. [20] - - - - - - 39.8 27.3 12.9 44.3 23.6 -
VLANet [63] - - - - - - 45.24 31.83 14.17 - - -
FSAN [101] - - - - - - - - - 55.11 29.43
MARN [87] - - - - - - 48.55 31.94 14.81 47.01 29.95 -
RTBPN [137] - - - - - - 60.04 32.36 13.24 49.77 29.63 -
BAR [104] - - - - - - 44.97 27.04 12.23 49.03 30.73 -
CCL [138] - - - - - - - 33.21 15.68 50.12 31.07 -
VCA [102] - - - - - - 58.58 38.13 19.57 50.45 31 -
LoGAN [91] - - - - - - 51.67 34.68 14.54 - - -
CRM [41] - - - - - - 53.66 34.76 16.37 55.26 32.19 -
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methods) which are segmented by double horizontal lines. Table 4 separately reports the experimental results on
DiDeMo dataset with metrics of R@{1, 5},IoU=1.0 and mIoU.

Two-stage method. As shown in Table 3, the overall performance of two-stage methods seems poorer than
other approaches. The possible reasons lie in three folds: (1) Firstly, most of the two-stage methods combine video
and sentence features coarsely, and neglect the ine-grained visual and textual interactions for accurate temporal
sentence grounding in videos. (2) Secondly, separating the candidate segment generation and query-moment
matching procedures will make the model unable to be globally optimized, which can also inluence the overall
performance. (3) Thirdly, establishing matching relationships between sentence queries and individual segments
will make the local video content separate with the global video context, which may also hurt the temporal
grounding accuracy.

Speciically, for the sliding window (SW)-based methods, all of them achieve the lowest grounding accuracy on
the TACoS compared to the other three datasets with the same metrics. The reason is that the cooking activities in
TACoS take place in the same kitchen scene with only some slightly varied cooking objects (e.g., chopping board,
knife, and bread). Thus, it is hard to do temporal location predictions for such ine-grained activities. Meanwhile,
the lengths of videos in TACoS are also longer, which will greatly increase the target segment searching space
and bring more diiculties. Obviously, MMRG outperform other SW-based methods with great gains on both
TACoS and Charades-STA. Despite using the same moment sampling strategies with CTRL, the multi-modal
relational graph MMRG employs can capture subtle diferences of candidate moments from the same video and
the customized self-supervised pre-training tasks further improve the visual features. Regardless of MMRG,
ACL-K also signiicantly outperforms the remaining SW-based methods on TACoS and Charades-STA, proving
the efectiveness of aligning the activity concepts mined from both textual and visual parts. MCN gets the most
inferior results on the Charades-STA, which shows that its simple multimodal matching and ranking strategy for
candidate segments cannot deal well with the segments of various and lexible locations. However, CTRL, ACRN,
ROLE, SLTA, VAL, ACL-K and MMRG can adjust the candidate segment boundaries based on the model location
ofsets prediction, which can therefore improve the performances. All of the sliding window-based methods
have not conducted experiments on the large-scale ActivityNet Captions dataset, which may due to the costly
computation for multi-scale sliding window sampling.
The proposal-generated (PG) methods achieve even better performance than the SW-based methods though

the number of proposal candidates decreases. QSPN with query-guided segment proposal network and auxiliary
captioning loss signiicantly outperforms other two-stage methods (except MMRG) on the Charades-STA, which
demonstrates that the presented query-guided proposal network is able to provide more efective candidate
moments with iner temporal granularity without dealing with redundant sliding window sampled moments.
QSPN also conducts experiments on ActivityNet Captions that is comprised of richer scenes, and it even achieves
competitive results with single-stage anchor-based methods, which further proves the efectiveness of captioning
supervision and query-guided proposals. Since the videos in Charades-STA are of shorter lengths and contain
less diverse activities, it is necessary to focus more on the metrics with higher IoU thresholds. SAP consistently
outperforms those SW-based methods on Charades-STA with a higher IoU threshold, which attributes to its
discriminative generated proposals and additional reinement process.
Single-stage method. For anchor-based (AB) methods, TGN achieves the lowest performance on TACoS

and ActivityNet Captions. CMIN also performs poorly on TACoS. The common inferior accuracy achieved by
TGN, CMIN and CBP may attribute to their single-stream anchor-based localization frameworks. With sequential
RNNs, they fail to reason complex cross-modal relations on datasets (i.e., TACoS and ActivityNet Captions) of
longer video lengths. Instead of employing RNN-styled anchors, both SCDM and MAN use convolutional neural
networks to better capture ine-grained interactions and diverse video contents of diferent temporal granularities,
which can achieve better performance (e.g., SCDM performs better than TGN/CMIN and TGN/CBP on TACoS
and ActivityNet Captions, respectively). To make further improvement, 2D-TAN extends it to 2D feature maps
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to model the adjacent relations of various candidate moments of multi-anchors. SMIN and Zhang et al. [133]
that adopt such a similar 2D structure modelling the relationships of candidate moments, also achieve superior
results out of AB methods on TACoS, Charades-STA and ActivityNet Captions. Speciically, the model presented
by Zhang et al. [133] performs the best on TACoS while SMIN has surpassed other methods on Charades-STA,
which also prove the efectiveness of 2D moment relationship modelling. Furthermore, CSMGAN, SMIN and
Zhang et al. [133] all achieve superior results on ActivityNet Captions. It is noted that although CSMGAN adopts
the similar sequential RNN like TGN but it builds a joint graph for modelling the cross-/self-modal relations
which can capture the high-order interactions between two modalities efectively.

For anchor-free (AF) methods, the overall performance is slightly behind that of AB methods especially with
the challenging ActivityNet Caption dataset. More speciically, reading comprehension-inspired methods (ExCL,
VSLNet, TMLGA, CPN, DORi, CI-MHA and PEARL) outperform other types of anchor-free methods with a
signiicant gap. However, TMLGA achieves the lowest performance with the metrics of R@1,IoU={0.3, 0.5} on
ActivityNet Captions. One possible reason is that the subjectivity of annotation is the hardest to model for
this challenging dataset. The dense AF methods including DRN, GDP and DEBUG outperform the early sparse
regression network ABLR, justifying the importance of increasing the number of positive training samples.
However, the additional regression-based methods including PMI, HVTG and LGI achieve superior performance
on ActivityNet Captions, which may result from more efective interaction between visual and textual contents.
An obvious observation is that DORi achieves the highest grounding accuracy (with IoU=0.7) among all single-
stage methods on TACoS and Charades-STA. Since its spatio-temporal graph is able to model more ine-grained
object interactions that change over time. It is noted that L-Net has not been included in the table since the
original paper [12] did not report the speciic experimental values.

Additionally, other single-stage methods (BPNet, DPIN and CBLN) which can not be grouped into either anchor-
based or anchor-free method achieve comparable results on three datasets (except DiDeMo). Speciically, CBLN
achieves superior performance among all single-stage methods on Charades-STA and ActivityNet Captions,
which quite highlights the advantages of combining anchor-based and anchor-free schemes and its special
biaine-based architecture.

RL-based method. Although the overall performance of RL-based methods can not reach that of traditional
single-stage SOTA methods, they provide brand-new thoughts to address the TSGV task and the sequential
decision-making process can also enhance the ability of interpretability. Particularly, TSP-PRL outperforms
TropNet and R-W-M on ActivityNet Captions and Charades-STA, which may contribute to its tree-structured
policy design inspired by the coarse-to-ine human-decision-making process. STRONG and AVMR achieve the
best performance out of the RL-based frameworks on TACoS due to the efectiveness of spatial RL for scene
tracking and the employment of adversarial learning, respectively. R-W-M, TripNet and SM-RL achieve relative
inferior performance. Speciically, SM-RL achieves lowest performance on Charades-STA and TACoS while
TripNet keeps the lowest performance on ActivityNet Captions.

Weakly supervised method. Due to the great challenge that temporal annotations of groundtruth moments
are not available at training stage for weakly supervised (WS) methods. The experimental results on Charades-
STA and ActivityNet Captions are apparently not as good as above fully-supervised ones. We cannot tell which
framework (i.e., MIL-based or reconstruction-based) has absolute advances according to their overall performances.
But among all WS methods, CCL, VCA and CRM achieve superior performance on both Charades-STA and
ActivityNet Captions. The results are also competitive compared with those of other fully supervised methods.
To investigate the reasons, one inding is that they all design special training objectives that help in better visual-
semantic alignment even without the annotated boundary information. Speciically, CCL is able to construct
ine-grained supervision signals from counterfactual results for the contrastive training. Meanwhile, VCA re-
deines the TSGV problem and design a new loss for visual co-occurrence alignment learning. Moreover, CRM

ACM Trans. Multimedia Comput. Commun. Appl.



22 • Lan, et al.

minimizes the mismatched sentence-moment pairs during training by expanding the scope to paragraph level
that can further consider the temporal ordering between sentences.

Table 4. The evaluation results on DiDeMo (The IoU threshold

m = 1.0).

Type Method R@1 R@5 mIoU

Fully supervised

TMN [53] 22.92 76.08 35.17
TGN [11] 24.28 71.43 38.62

VLG-Net [85] 25.57 71.65 -
MCN [38] 28.1 78.21 41.08
MAN [128] 27.02 81.7 41.16

Weakly supervised

TGA [67] 12.19 39.74 24.92
VLANet [63] 19.32 65.68 25.33
WSLLN [31] 19.4 53.1 25.4
FSAN [101] 19.4 57.85 31.92
RTBPN [137] 20.79 60.26 29.81
LoGAN [91] 39.2 64.04 38.28

DiDeMo evaluation results with particularmet-

rics. As aforementioned, MCN [38] reports the results
on DiDeMo dataset under the IoU threshold m=1.0.
Some works [11, 63, 128] following MCN also adopt
such metrics to assess their models. We supplemen-
tally list the evaluation results (i.e., R@{1, 5},IoU=1.0
and mIoU) on DiDeMo shown in Table 4, which are
grouped by the supervision manner. Speciically, Lo-
GAN as a WS method achieves the best performance
among both fully and weakly supervised methods,
which is also due to the efective visual-semantic rep-
resentation learning via a latent graph co-attention
network. Another observation is that the top-1 recall
values for all fully supervised methods are constrained
into a certain small range (22%ś27%). It demonstrates
that DiDeMo can not greatly diferentiate the perfor-
mance of methods, which may result from its limitation of taking pre-deined segments as groundtruth.

4 DISCUSSIONS

In this section, we discuss the limitations of current benchmarks and point out several promising research
directions for TSGV. Firstly, we comprehensively divide these limitations into three categories, i.e., the temporal
annotation biases and ambiguous groundtruth annotations in public datasets, and the problematic evaluation
metrics. These limitations may heavily mislead the TSGV approaches since each proposed method should be
evaluated with these benchmarks. Meanwhile, we also present a couple of recent eforts to address these issues
with proposing new datasets/metrics or proposing new methods. Then, we point out some promising research
directions of TSGV including four typical tasks, i.e., large-scale video corpus moment retrieval, spatio-temporal
localization, audio-enhanced localization and video-language pre-training. We hope these research advances can
provide more insights for future TSGV explorations, and thus further promote the development in this area.

4.1 Limitations of Current Benchmarks

Despite the promising results which have been made in TSGV, there are also some recent works [70, 121] doubting
the quality of current datasets and metrics: (1) The joint distributions of starting and ending timestamps of target
video segments are strongly biased and almost identical in the training and test splits of current datasets. Without
truly modelling the video and sentence data, and just itting such distribution biases in the training set, some
baselines can still achieve good results and even outperform some well-designed methods. (2) The annotation of
groundtruth segment location for TSGV is ambiguous and subjective, and may inluence the model evaluation.
(3) Current evaluation metrics are easily deceived by the above annotation biases in current datasets, and cannot
measure the model performance efectively. Since TSGV is heavily driven by these datasets and evaluation metrics,
such problematic benchmarks will inluence the research progress of TSGV, and further mislead this research
direction. In the following, we will detail the limitations on existing datasets and evaluation metrics, and present
some recent solutions to address these issues.

Annotation distribution biases in datasets. Some recent studies [70, 121] attempt to visualize the temporal
location distribution of groundtruth segments, inding joint distributions of starting and ending timestamps
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Fig. 15. Performance of SOTA TSGV methods on re-organized data splits, figure adapted from [121].

of groundtruth segments identical in training and test sets with obvious distribution biases. They design some
simple model-free methods, for example, a bias-based method [121], which samples locations from the observed
training distribution and takes them as predicted locations of target segments at inference stage. This bias-based
method can achieve good performance even surpassing some well-designed deep models, without any valid visual
and textual inputs. Further, Yuan et al. [121] re-organize two benchmark datasets for out-of-distribution test. They
create two diferent test sets: one test set follows the identical temporal location distribution with the training set,
namely test-iid, and the other test set that has quite diferent distribution with the training set, namely test-ood.
After comparing the experimental results of various baseline methods on these two test sets, they ind that for
almost all methods, the performance on test-ood drops signiicantly (c.f ., Fig. 15), which indicates that existing
methods are heavily inluenced by temporal annotation biases and do not truly model the semantic matching
relationship between videos and texts. Thus, it is crucial for future works to construct de-biased datasets and
build robust models unafected by biases. Recently, there have been some attempts to address this issue. For
example, Yang et al. [112] design a causal-inspired framework based on CTRL and 2D-TAN, which attempts
to eliminate the spurious correlation between the input and prediction caused by hidden confounder (i.e., the
temporal location of moments).

Moreover, it is worth noting that there are some de-biased works [69, 142] that concentrate on other kinds of
biases in TSGV instead of the moment annotation distribution biases. Zhou et al. [142] are devoted to dealing with
the biases caused by single-style of annotations. The proposed DeNet with a debiasing mechanism can produce
diverse yet plausible predictions. Nan et al. [69] propose an approach to approximate the latent confounder set
distribution based on the theory of causal inference to deconfound selection biases introduced by datasets (e.g.,
in datasets, it appears more often that a person is holding a vacuum cleaner than a person is repairing a vacuum
cleaner).

Ambiguity of groundtruth annotation.One recent study [70] also mentions the ambiguous and inconsistent
annotations among current TSGV datasets. Annotating the target segment location of the provided sentence
query is a quite subjective task. In some cases, one query can be matched with multiple segments in videos, or
diferent annotators will make diferent decisions on the grounded location of the sentence query. Therefore,
only using one single groundtruth to evaluate the temporal grounding results is problematic. Otani et al. [70]
suggest to re-annotate the benchmark datasets with multiple groundtruth moments for one given sentence query
if exists, as shown in Fig. 16, they ask ive annotators to re-annotate a video from ActivityNet Captions given the
query ła woman is doing somersaults and big jumps alonež. These ive re-annotated segments corresponding
to the query are totally diferent and do not overlap with the groundtruth segment, justifying the ambiguity
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Fig. 16. The re-annotation example for ActivityNet Captions. The annotators annotate five diferent positive segments (shown

as blue bars), all of which match the given query. While the original groundtruth segment is represented as grey bar, figure

from [70].

and subjectivity of groundtruth annotations. They further present two alternative evaluation metrics that take
multiple annotated groundtruth moments into consideration.

Limitation of evaluationmetrics. Besides the temporal annotation biases in current dataset, Yuan et al. [121]
also ind that some characteristics of the datasets may have negative efects on model evaluation. Most of previous
TSGV methods [11, 58, 108, 124, 134] report their scores on some small IoU thresholds like� ∈ {0.1, 0.3, 0.5}.
However, for ActivityNet Captions, a substantial proportion of groundtruth moments are of quite long lengths.
Statistically, 40%, 20%, and 10% of sentence queries refer to a moment occupying over 30%, 50%, and 70% of the
length of the whole video, respectively. Such annotation biases can obviously increase the chance of correct
prediction under small IoU thresholds. Taking an extreme case as an example, if the groundtruth moment is
the whole video, any predictions with duration longer than 0.3 can achieve R@1,IoU=0.3=1. Thus, the metric
R@n, IoU=� with small� is unreliable for current biased annotated datasets. Therefore, to alleviate the above
efects, they present a new metric namely discounted-R@�, IoU=�. This new metric considers that the hit
score (i.e., � (�,�,�� )) for each positive sample � should not be limited to {0, 1}. It can be a real number ∈ [0, 1]
depending on the relative distances between the predicted and groundtruth boundaries. The formal deinition for
each sample � is as follows:

� (�,�,�� ) = (1 − nDis(��� , �
�
� )) × (1 − nDis(��� , �

�
� )) , (14)

where the nDis operation calculates the distance between the groundtruth and predicted boundaries normalized
to [0, 1] by the video length. (��� , �

�
� )/(�

�
� , �

�
� ) indicates the (start,end) timestamps of the groundtruth/predicted

segment for sample � .

4.2 Promising Research Directions

We point out some promising research directions, including four TSGV-related tasks based on TSGV.

4.2.1 Large-scale video corpus moment retrieval. Large-scale video corpus moment retrieval (VCMR) is a research
direction extended from TSGV that has been explored over the past few years [27, 49, 80, 127, 129]. It has more
application value since it can retrieve the target segment semantically corresponding to a given text query from a
large-scale video corpus (i.e., a collection of untrimmed and unsegmented videos) rather than from a single video.
As compared with TSGV, VCMR has higher eiciency requirements since it not only needs to retrieve a speciic
segment from one single video but also locates the target video from a video corpus.
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Escorcia et al. [27] irst extend TSGV to VCMR, introducing amodel named Clip Alignment with Language (CAL)
to align the query feature with a sequence of uniformly partitioned clips for moment composing. Lei et al. [49]
introduce a new dataset for VCMR called TVR, which is comprised of videos and their associated subtitle texts.
A Cross-modal Moment Localization (XML) network with a novel convolutional start-end detector module is
also proposed to produce moment predictions in a late fusion manner. Zhang et al. [127] present a hierarchical
multi-modal encoder (HAMMER) to capture both coarse- and ine-grained semantic information from the videos
and train the model with three sub-tasks (i.e., video retrieval, segment temporal localization, and masked language
modelling). Zhang et al. [129] introduce contrastive learning for VCMR, designing a retrieval and localization
network with contrastive learning (ReLoCLNet).

4.2.2 Spatio-temporal localization. Spatial-temporal sentence grounding in videos is another extension from
TSGV which mainly localizes the referring object/instance as a continuing spatial-temporal tube (i.e., a sequence
of bounding boxes) extracted from an untrimmed video via a natural language description. Since ine-grained
labeling process of localizing a tube (i.e., annotate a spatial region for each frame in videos) for STSGV is labor-
intensive and complicated, Chen et al. [21] propose to solve this task in a weakly-supervised manner which only
needs video-level descriptions, with a newly-constructed VID-sentence dataset. Besides, VOGNet [79] commits
to address the task of video object grounding, which grounds objects in videos referred to the natural language
descriptions, and constructs a new dataset called ActivityNet-SRL. Zhang et al. [139] propose a spatio-temporal
graph reasoning network (STGRN) for grounding multi-form sentences that depict an object and construct a
new dataset VidSTG. Tang et al. [92] employ visual transformer to solve a similar task which aims to localize a
spatio-temporal tube of the target person from an untrimmed video based on a given textural description with
a newly-constructed HC-STVG dataset. Su et al. [89] further present a new STVGBert framework based on a
visual-linguistic transformer to perform object tube predictions without any pre-trained object detectors.

4.2.3 Audio-enhanced localization. The current inputs for TSGV only contain the given sentence along with the
untrimmed video. However, the audio signals are not efectively exploited, which may provide extra guidance for
video localization, e.g., the loud noise while using electronics in the kitchen or cheers from the audience when the
football player kicks a goal. Such various forms of sounds do ofer auxiliary but essential clues for more precise
localization of the target moments, which has not been explored yet. Moreover, what people speak in videos can
be converted into text with the Automated Speech Recognition (ASR) technique. The converted text also provides
relevant information for the cross-modal alignment between video and the text query. Nowadays, there has been
many works [39, 111] in visual-and-language area with audio-enhanced auxiliary proving its efectiveness for
performance improvements. Thus, it is a promising future direction to embed the audio information for the TSGV
task.

4.2.4 Video-language pre-training. Video-language pre-training [62, 71] has proven to improvemany downstream
text-based video understanding tasks, e.g., video captioning, video question answering and video retrieval.
Therefore, some pioneer works attempt to leverage video-language pre-training to beneit the TSGV task. Xu et

al. [110] design boundary-aware proxy tasks to get boundary-sensitive video features for downstream localization,
which can beneit many temporal localization tasks including TAL, TSGV, and step localization. Zeng et al. [126]
introduce the graph pre-training upon their multi-modal relational graph to enhance the visual features with
explicit relations. They design two node-level and graph-level self-supervised pre-training tasks (i.e., attribute
masking and cross-modal context prediction).

5 CONCLUSION

Temporal Sentence Grounding in Videos (TSGV) is a fundamental and challenging task connecting computer
vision and natural language processing communities. It is also worth exploring since it can be seen as an
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intermediate task for some downstream video understanding applications such as video question answering,
video summarization and video content retrieval.

In this survey, we take a systematic and insightful overview of the current research progress of the TSGV
task, by categorizing existing approaches, benchmark datasets and evaluation metrics. The identiied limitations
of current benchmarks as well as our careful thoughts on promising research directions are also provided to
researchers, aiming to further promote the development for TSGV. For future works, we suggest that i) more
eforts should be made on proposing unbiased datasets and reliable metrics to better evaluate new methods for
TSGV, and ii) models that are more robust and able to generalize well in dynamic scenarios should be paid with
more attentions.
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